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Chapter 3: Elliptic Curve Cryptography (ECC) 

3.1 Introduction 

An elliptic curve is defined by an equation in two variables with coefficients. For cryptography, 

the variables and coefficients are restricted to elements in a finite field, which results in the 

definition of a finite abelian group. The principal attraction of ECC, compared to RSA, is that it 

appears to offer equal security for a far smaller key size, thereby reducing processing overhead. 

3.2 Elliptic Curves over Real Numbers 

Elliptic curves are not ellipses. They are so named because they are described by cubic 

equations. In general, cubic equations for elliptic curves take the following form, known as a 

Weierstrass equation: 

                      

where a, b, c, d, e are real numbers and x and y take on values in the real numbers. For our 

purpose, it is sufficient to limit ourselves to equations of the form 

             (3.1) 

Such equations are said to be cubic, or of degree 3, because the highest exponent they contain is 

a 3. Also included in the definition of an elliptic curve is a single element denoted O and called 

the point at infinity or the zero point. To plot such a curve, we need to compute 

  √        

For given values of a and b, the plot consists of positive and negative values of y for each value 

of x. Thus, each curve is symmetric about y = 0 as shown in Figure 3.1.  

Now, consider the set of points E(a, b) consisting of all of the points (x, y) that satisfy Equation 

(3.1) together with the element O. Using a different value of the pair (a, b) results in a different 

set E(a, b). Using this terminology, the two curves in Figure 3.1 depict the sets E(-1, 0) and E(1, 

1), respectively. 

3.2.1 GEOMETRIC DESCRIPTION OF ADDITION  

It can be shown that a group can be defined based on the set E(a, b) for specific values of a and b 

in Equation (3.1), provided the following condition is met: 

             (3.2) 

To define the group, we must define an operation, called addition and denoted by +, for the set 

E(a, b), where a and b satisfy Equation (3.2). In geometric terms, the rules for addition can be 

stated as follows: If three points on an elliptic curve lie on a straight line, their sum is O. From 

this definition, we can define the rules of addition over an elliptic curve. 
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Figure 3.1 Example of Elliptic Curves 

 

1. O serves as the additive identity. Thus O = -O; for any point P on the elliptic curve, P + 

O = P. In what follows, we assume P ≠ O and Q ≠ O. 

2. The negative of a point P is the point with the same x coordinate but the negative of the y 

coordinate; that is, if P = (x, y), then -P = (x, -y). Note that these two points can be joined 

by a vertical line. Note that P + (-P) = P - P = O. 

3. To add two points P and Q with different x coordinates, draw a straight line between 

them and find the third point of intersection R. It is easily seen that there is a unique point 

R that is the point of intersection (unless the line is tangent to the curve at either P or Q, 

in which case we take R = P or R = Q, respectively). To form a group structure, we need 

to define addition on these three points: P + Q = -R. That is, we define P + Q to be the 

mirror image (with respect to the x axis) of the third point of intersection. Figure 3.1 

illustrates this construction. 

4. The geometric interpretation of the preceding item also applies to two points, P and -P, 

with the same x coordinate. The points are joined by a vertical line, which can be viewed 

as also intersecting the curve at the infinity point. We therefore have P + (-P) = O, which 

is consistent with item (2). 

5. To double a point Q, draw the tangent line and find the other point of intersection S. Then 

Q + Q = 2Q = -S.  

 

3.2.2 ALGEBRAIC DESCRIPTION OF ADDITION  

In this subsection, we present some results that enable calculation of additions over elliptic 

curves. For two distinct points, P = (xP, yP) and Q = (xQ, yQ), that are not negatives of each other, 

the slope of the line l that joins them is Δ = (yQ - yP)/(xQ - xP). There is exactly one other point 

where l intersects the elliptic curve, and that is the negative of the sum of P and Q. After some 

algebraic manipulation, we can express the sum R = P + Q as 
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                  (3.3) 

We also need to be able to add a point to itself: P + P = 2P = R. When yP ≠ 0, the expressions 

are 

   (
   

   

   
)
 

          

   (
   

   

   
)              3.4 

3.3 Elliptic Curves over Zp 

For a prime curve over Zp, we use a cubic equation in which the variables and coefficients all 

take on values in the set of integers from 0 through p - 1 and in which calculations are performed 

modulo p. prime curves are best for software applications, because the extended bit-fiddling 

operations needed by binary curves are not required; 

For elliptic curves over Zp, as with real numbers, we limit ourselves to equations of the form of 

Equation (3.1), but in this case with coefficients and variables limited to Zp: 

                           (3.5) 

Now consider the set Ep(a, b) consisting of all pairs of integers (x, y) that satisfy Equation (3.5), 

together with a point at infinity O. The coefficients a and b and the variables x and y are all 

elements of Zp. 

For example, let p = 23 and consider the elliptic curve y
2
 = x

3
 + x + 1. In this case, a = b = 1. The 

figure 3.1b shows a continuous curve with all of the real points that satisfy the equation. For the 

set E23(1, 1), we are only interested in the nonnegative integers in the quadrant from (0, 0) 

through (p - 1, p - 1) that satisfy the equation mod p. Table 3.1 lists the points (other than O) that 

are part of E23(1, 1). Note that the points, with one exception, are symmetric about y = 11.5. 

It can be shown that a finite abelian group can be defined based on the set Ep(a, b) provided that 

(x
3
 + ax + b) mod p has no repeated factors. This is equivalent to the condition 

                           (3.2) 

Table 3.1: Points (other than O) on the Elliptic Curve E23(1, 1) 
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The rules for addition over Ep(a, b), correspond to the algebraic technique described for elliptic 

curves defined over real numbers. For all points P, Q ∈ Ep(a, b): 

1. P + O = P. 

2. If P = (xP, yP), then P + (xP, -yP) = O. The point (xP, -yP) is the negative of P, denoted as 

-P. For example, in E23(1, 1), for P = (13, 7), we have -P = (13, -7). But -7 mod 23 = 16. 

Therefore, -P = (13, 16), which is also in E23(1, 1). 

3. If P = (xp, yp) and Q = (xQ, yQ) with P ≠ -Q, then R = P + Q = (xR, yR) is determined by 

the following rules: 

                     

                       

where 

  

{
 
 

 
 (

     

     
)                        

(
   

   

   
)                       

 

4. Multiplication is defined as repeated addition; for example, 4P = P + P + P + P.  

For example, let P = (3, 10) and Q = (9, 7) in E23(1, 1). Then 

  (
    

   
)         (

  

 
)         (

  

 
)            

                                  

                                       

So P + Q = (17, 20). To find 2P 

  (
       

    
)         (

 

  
)         (

 

 
)           

The last step in the preceding equation involves taking the multiplicative inverse of 4 in Z23. This 

can be done using the extended Euclidean algorithm. To confirm, note that (6 * 4) mod 23 = 24 

mod 23 = 1 

                               

                                    

and 2P = (7, 12). 

3.4 Elliptic Curves over GF(2
m

) 
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For a binary curve defined over GF(2
m

), the variables and coefficients all take on values in 

GF(2
m

) and in calculations are performed over GF(2
m

). Binary curves are best for hardware 

applications, where it takes remarkably few logic gates to create a powerful, fast cryptosystem. 

3.5 ELLIPTIC CURVE CRYPTOGRAPHY 

Consider the equation Q = kP where Q, P ∈ EP(a, b) and k < p. It is relatively easy to calculate Q 

given k and P, but it is hard to determine k given Q and P. This is called the discrete logarithm 

problem for elliptic curves.  

We give an example taken from the Certicom Web site (www.certicom.com). Consider the group 

E23(9,17). This is the group defined by the equation y
2
 mod 23 = (x

3
 + 9x + 17) mod 23. What is 

the discrete logarithm k of Q = (4, 5) to the base P = (16, 5)? The brute-force method is to 

compute multiples of P until Q is found. Thus, 

P = (16,5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10); 

6P = (7, 3); 7P = (8, 7); 8P = (12, 17); 9P = (4, 5) 

Because 9P = (4, 5) = Q, the discrete logarithm Q = (4, 5) to the base P = (16, 5) is k = 9. In a 

real application, k would be so large as to make the bruteforce approach infeasible. 

3.5.1 Analog of Diffie–Hellman Key Exchange 

Key exchange using elliptic curves can be done in the following manner. First pick a large 

integer q, which is a prime number p, and elliptic curve parameters a and b for Equation (3.5). 

This defines the elliptic group of points Eq(a, b). Next, pick a base point G = (x1, y1) in Ep(a, b) 

whose order is a very large value n. The order n of a point G on an elliptic curve is the smallest 

positive integer n such that nG = 0 and G are parameters of the cryptosystem known to all 

participants. A key exchange between users A and B can be accomplished as follows 

 

1. A selects an integer nA less than n. This is A’s private key. A then generates a public key PA = 

nA * G; the public key is a point in Eq(a, b). 

2. B similarly selects a private key nB and computes a public key PB. 

3. A generates the secret key k = nA * PB. B generates the secret key k = nB * PA. 

The two calculations in step 3 produce the same result because 

nA * PB = nA * (nB * G) = nB * (nA * G) = nB * PA 

To break this scheme, an attacker would need to be able to compute k given G and kG, which is 

assumed to be hard. 
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As an example, take p = 211; Ep(0, -4), which is equivalent to the curve y
2
 = x

3
 - 4; and G = (2, 

2). One can calculate that 240G = O. A’s private key is nA = 121, so A’s public key is PA = 

121(2, 2) = (115, 48). B’s private key is nB = 203, so B’s public key is 203(2, 3) = (130, 203). 

The shared secret key is 121(130, 203) = 203(115, 48) = (161, 69). 

Note that the secret key is a pair of numbers. If this key is to be used as a session key for 

conventional encryption, then a single number must be generated. We could simply use the x 

coordinates or some simple function of the x coordinate. 

3.5.2 Elliptic Curve Encryption/Decryption 

The first task in this system is to encode the plaintext message m to be sent as an (x, y) point Pm. 

It is the point Pm that will be encrypted as a ciphertext and subsequently decrypted. Note that we 

cannot simply encode the message as the x or y coordinate of a point, because not all such 

coordinates are in Eq(a, b); for example, see Table 3.1. Again, there are several approaches to 

this encoding, which we will not address here, but suffice it to say that there are relatively 

straightforward techniques that can be used. 

As with the key exchange system, an encryption/decryption system requires a point G and an 

elliptic group Eq(a, b) as parameters. Each user A selects a private key nA and generates a public 

key PA = nA * G. 

To encrypt and send a message Pm to B, A chooses a random positive integer k and produces the 

ciphertext Cm consisting of the pair of points: 

Cm = {kG, Pm + kPB} 
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Note that A has used B’s public key PB. To decrypt the ciphertext, B multiplies the first point in 

the pair by B’s private key and subtracts the result from the second point: 

Pm + kPB - nB(kG) = Pm + k(nBG) - nB(kG) = Pm 

A has masked the message Pm by adding kPB to it. Nobody but A knows the value of k, so even 

though Pb is a public key, nobody can remove the mask kPB. However, A also includes a “clue,” 

which is enough to remove the mask if one knows the private key nB. For an attacker to recover 

the message, the attacker would have to compute k given G and kG, which is assumed to be 

hard. 

Let us consider a simple example. The global public elements are q = 257; Eq(a, b) = E257(0, -4), 

which is equivalent to the curve y
2
 = x

3
 - 4; and G =(2, 2). Bob’s private key is nB = 101, and his 

public key is PB = nBG = 101(2, 2) =(197, 167). Alice wishes to send a message to Bob that is 

encoded in the elliptic point Pm = (112, 26). Alice chooses random integer k = 41 and computes 

kG =41(2, 2) = (136, 128), kPB = 41(197, 167) = (68, 84) and Pm + kPB = (112, 26)+ (68, 84) = 

(246, 174). Alice sends the ciphertext Cm = (C1, C2) = {(136, 128), (246, 174)} to Bob. Bob 

receives the ciphertext and computes C2 - nBC1 = (246, 174) - 101(136, 128) = (246, 174) - (68, 

84) = (112, 26). 

3.5.3 ELLIPTIC CURVE DIGITAL SIGNATURE ALGORITHM 

First we give a brief overview of the process involved in ECDSA. In essence, four elements are 

involved. 

1. All those participating in the digital signature scheme use the same global domain parameters, 

which define an elliptic curve and a point of origin on the curve. 

2. A signer must first generate a public, private key pair. For the private key, the signer selects a 

random or pseudorandom number. Using that random number and the point of origin, the signer 

computes another point on the elliptic curve. This is the signer’s public key. 

3. A hash value is generated for the message to be signed. Using the private key, the domain 

parameters, and the hash value, a signature is generated. The signature consists of two integers, r 

and s. 

4. To verify the signature, the verifier uses as input the signer’s public key, the domain 

parameters, and the integer s. The output is a value v that is compared to r. The signature is 

verified if v = r. 

Let us examine each of these four elements in turn. 

Global Domain Parameters 

The global domain parameters for ECDSA are the following: 

q  a prime number 



Advanced Cryptography   Chapter 3: ECC 

Computer Science  Dr. Mohammed A. Hussain 

a, b  integers that specify the elliptic curve equation defined over Zq with the equation y
2
 = x

3
 

+ ax + b 

G  a base point represented by G = (xg, yg) on the elliptic curve equation 

n  order of point G; that is, n is the smallest positive integer such that nG = O. This is also 

the number of points on the curve. 

Key Generation 

Each signer must generate a pair of keys, one private and one public. The signer, let us call him 

Bob, generates the two keys using the following steps: 

1. Select a random integer d, d ∈ [1, n - 1] 

2. Compute Q = dG. This is a point in Eq(a, b) 

3. Bob’s public key is Q and private key is d. 

Digital Signature Generation and Authentication 

With the public domain parameters and a private key in hand, Bob generates a digital signature 

of 320 bytes for message m using the following steps: 

1. Select a random or pseudorandom integer k, k ∈ [1, n - 1] 

2. Compute point P = (x, y) = kG and r = x mod n. If r = 0 then goto step 1 

3. Compute t = k
-1

 mod n 

4. Compute e = H(m), where H is one of the SHA-2 or SHA-3 hash functions. 

5. Compute s = k
-1

(e + dr) mod n. If s = O then goto step 1 

6. The signature of message m is the pair (r, s). 

Alice knows the public domain parameters and Bob’s public key. Alice is presented with Bob’s 

message and digital signature and verifies the signature using the following steps: 

1. Verify that r and s are integers in the range 1 through n - 1 

2. Using SHA, compute the 160-bit hash value e = H(m) 

3. Compute w = s
-1

 mod n 

4. Compute u1 = ew and u2 = rw 

5. Compute the point X = (x1, y1) = u1G + u2Q 

6. If X = O, reject the signature else compute v = x1 mod n 

7. Accept Bob’s signature if and only if v = r 
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